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Abstract

Multisite contributions are essential to improve the reliability and statistical power of imaging 

studies but introduce a complexity because of different acquisition protocols and scanners. The 

hemodynamic response function (HRF) is the transform that relates neural activity to the measured 

blood oxygenation level-dependent (BOLD) signal in MRI and contains information about the 

latency, amplitude, and duration of neuronal activations. Acquisition variabilities, without adding 

harmonization techniques, can severely limit our ability to characterize spatial effects. To address 

this problem, we propose to study and remove variabilities of the sampling rate and scanners on 

estimates of the HRF. We computed the HRF using a blind deconvolution method in 547 subjects 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) across 62 sites and 18 scanners. 

The approach consists of studying the changes of the response according to repetition times (TR) 

and scanner models. We applied ComBAT, a statistical multi-site harmonization technique, to 

evaluate and reduce the scanner and repetition time effects and used the Wilcoxon rank sum test 

to assess the performance of the harmonization. Results show high scanner and repetition time 

variabilities (|d| ≥ 0.38, p = 4.5 × 10−5) across features, indicating that using harmonization is 

crucial in multi-site studies. ComBAT successfully removes the sampling effects and reduces the 

variance between scanners for 7 out of 10 of the HRF features (|d| ≤ 0.05, p = 0.0052). Scanners 

effects have been characterized on multi-site datasets, but the repetition time impact has been less 

studied. We showed that the use of different values of repetition time leads to changes in HRF 

behavior. Regression modeling changes in the HRF on the harmonized data are not significant (p = 

0.0401) which does not allow to conclude how HRF changes with aging.
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1. INTRODUCTION

Blood oxygenation level-dependent (BOLD) effects produce contrast in functional magnetic 

resonance imaging (fMRI) of the brain that indicate changes in blood flow, volume 

and/or oxygenation[1]. BOLD signals are indirect measures of neuronal activity and are 

characterized by a hemodynamic response function (HRF) which represents the transient 

response in MRI signal after a brief neural stimulus [2]. Studies of the HRF have focused on 

evoked BOLD signal changes during stimulus-response tasks. More recently, studies [3], [4] 

have shown that by identifying relatively large amplitude peaks in a resting state acquisition, 

it is possible to reliably estimate the HRF without the use of stimuli. Aggregation of data 

across multiple sites is essential for improving statistical power and reliability of results but 

introduces variability between acquisition protocols and scanners used. Studies of functional 

MRI data [5]–[7] have demonstrated large variability between acquisition sites, but few 

[8] have focused on reducing scanner variability. Recently the ComBAT [9] harmonization 

technique has been shown to remove site effects in multisite diffusion tensor imaging (DTI) 

studies[10] while keeping the biological variabilities of subjects. In this work, we examined 

the effects of the variabilities from scanners and repetition time TR on the HRF. To extract 

the HRF and its features we used a blind-deconvolution method with resting state fMRI 

data [4] and coregistered the data in a standard space. We quantified the differences between 

three manufacturers using statistical tests and applied ComBAT to harmonize the scanners 

and repetition times. To then investigate possible changes in HRF with aging, we used a 

cubic spline regression between each feature and age. We also studied the differences in the 

behavior of each HRF feature between white matter and gray matter to compare our results 

to previous findings.

2. METHOD

2.1 Dataset

ADNI is a longitudinal multisite study that aims to improve clinical trials for the prevention 

and treatment of Alzheimer’s disease1 [11]. Our subset is composed of the rollover of 

patients from ADNI 1 to ADNI 2 [12]; new patients of ADNI 2 and their visit after 3 and 6 

months; the rollover of patients from ADNI 2 to ADNI 3 [13]; and new patients of ADNI 3. 

Subjects have been followed up to 5 years after the first visit for ADNI 2 and up to 4 years 

for ADNI 3. In total the dataset includes 160 subjects from ADNI 2 and 387 subjects from 

ADNI 3 and is composed of 271 men and 276 women aged between 56 and 96. Subjects are 

categorized into six groups: 230 cognitively normal (CN), 65 Significant Memory Concern 

(SMC), 98 Early Mild Cognitive Impairment (EMCI), 68 Middle Cognitive Impairment 

(MCI), 52 Late Mild Cognitive Impairment (LMCI), and 34 Alzheimer’s Disease (AD). The 

fMRI data were collected on 3T scanners from 62 acquisition sites, 18 different models of 

scanners (from GE, Philips, and Siemens) in a resting state, with TR varying between 0.607 

to 3s. Processing of the fMRI data included slice timing correction, alignment, detrending, 

and z-normalization.

1 https://adni.loni.usc.edu/ 
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2.2 HRF and features estimations

We extracted the HRF using a blind deconvolution approach from the open-source toolbox 

rsHRF2 [4], [14]. We used the toolbox with a set of three gamma functions estimating 

the features of height, time to peak, and full width at half maximum (FWHM), and we 

computed the dip height, trough height, time to dip, time to trough, peak integral, dip 

integral, and trough integral (shown in Figure 1). To align each feature to the Montreal 

Neurological Institute (MNI) standard space for all subjects, we performed a two-step 

registration. First, we registered the fMRI data to the structural space using the anatomical 

image of the subject with FSL3 [15], [16]. Then, we estimated the transformation from the 

structural space to the MNI space using ANTs4 [17], which is applied to the functional 

images registered in the structural space. To assess variabilities between scans and repetition 

times and to examine whether there is a change in HRF with aging, we considered the 

average of each feature in gray matter (GM) and white matter (WM). The average of each 

subject is computed using the binary brain mask of the two tissues expressed in the MNI 

space.

2.3 Harmonization

We first showed the differences between scanners and repetition time on the white matter 

to highlight the need for harmonization techniques. To remove these effects, we used 

ComBAT5 [10], [18] and harmonized the WM and GM mean values. ComBAT is a 

method for correcting batch effects based on an empirical Bayes model initially developed 

for genomic data. It has been shown to remove site effects while preserving biological 

variability in multi-site studies. We selected 11 scanners with more than 26 samples per 

scanner and two repetitions times (TR=0.607s and TR=3.0s) with more than 90 samples. 

To quantify the differences between manufacturers and evaluate the performance of the 

harmonization, we compared the effect sizes before and after harmonization using Cohen’s 

d value. To assess if the differences between manufacturers were significant across features, 

we used the Wilcoxon rank sum[19], because the data distribution across manufacturers is 

not normal (p-value of the Shapiro-Wilk test [20] ≤ 10−5).

2.4 Modeling of HRF changes in aging

To study whether there is a variation in the HRF features according to age, we studied only 

the CN group obtained with a TR=3s and used the following spline-based model:

Y b0 + ∑
k = 1

K + d + 1
bkBk X

where X is the age, Y is the mean value of the studied feature in the white or gray matter, 

b0 is the intercept, and the bk are the coefficients associated with the B-spline Bk. The spline 

order has been chosen as cubic (d = 3) with one knot (k = 1), located at 77. We used 

2 https://github.com/compneuro-da/rsHRF 
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
4 http://stnava.github.io/ANTs/ 
5 https://github.com/Jfortin1/ComBatHarmonization 
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bootstrapping to compute the confidence intervals of the regression curve at 5% and 95%. 

Bootstrapping [21] was applied to 50% of the age distribution restricted between [65; 90], 

used to predict the regression curve. During the bootstrapping procedure, we randomized 

the knot value between the years 74 and 80. To evaluate if there are changes in aging, we 

computed a likelihood ratio test[22] between our model and the same model without the 

B-spline terms. If the p-value is significant, it means that the feature studied is associated 

with age.

3. RESULTS

3.1 Harmonization

Figure 2.A shows the Cohen’s d and p values obtained for each feature for the three 

manufacturers before harmonization. If the p-value is less than 0.005, this indicates 

that the differences between the two distributions are statistically significant. We show 

important differences between scanners for height, dip height, trough height, peak integral, 

dip integral, trough integral, time to dip (GE/Philips), time to trough (GE/Siemens and 

Philips/Siemens), and FWHM (GE/Siemens and Philips/Siemens). However, the differences 

between manufacturers for the time to peak are not significant. In addition, there are 

large effect sizes between manufacturers, especially between Siemens and Philips, that are 

effectively reduced by ComBAT for all the features of the HRF, highlighting the need for 

harmonization in multi-site studies.

For most features, the p-value does not reject the null hypothesis after harmonization, 

showing that the differences between manufacturers are no longer significant, except for 

the trough integral (GE/Siemens), the time to peak (Philips/Siemens), and FWHM (Philips/

Siemens) where differences remain. For all features, the Cohen’s d values are significantly 

reduced since they are lower than 0.054. In Figure 3, we show visually the effect of 

ComBAT on the data. Each point represents a scan, colored by site-specific attributes 

TR for the first two columns and scanner model for the latter two. We see a successful 

harmonization of repetition times since each scan obtained with a TR=0.607s is moved into 

the scans obtained with a TR= 3s. The harmonization of the scanners is to a lesser extent 

successful since the variance associated with the different scanners decreases as well as the 

difference between the means is decreased.

3.2 Modeling of HRF changes with aging

In figure 4 we show the regression curves for all HRF parameters. Each point represents the 

parameters average in WM (orange) or GM (blue) of a subject. For all features, changes with 

aging are not significant (p = 0.0401). We show a time to peak, time to dip, and FWHM 

higher in the WM than in the GM, which also are consistent with previous studies[23]. For 

the parameters of the height, trough height, peak integral, and trough integral, the values of 

WM and GM are consistent with the literature because it has been shown that the amplitude 

of the BOLD signal is less in the WM than in the GM[23], [24]. However, this study has 

also shown a dip height in the WM lower than the GM, which is not shown by our results. 

In Figure 5 we show the HRF average across a population where the images were acquired 

with a repetition time of 3s and 0.607s. The curves obtained with a low TR are consistent 
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with the results of previous studies[23], which makes it possible to validate the method and 

results. This shows the impact of the repetition time during the acquisition of images as 

it seems to indicate that low temporal resolution acquisitions do not precisely capture the 

variations of the HRF.

4. CONCLUSION

In this study, we quantified the scanner and TR effects on the hemodynamic response 

function. The HRF and its features were computed using a blind deconvolution approach 

and we applied ComBAT on each feature. We also studied how the HRF changes in healthy 

aging using a spline-based model. We showed significant scanners and TR effects on the 

HRF, that ComBAT was able to eliminate, but there remains variability in the data, which 

did not identify a change in HRF with aging. There is an important sensitivity of the HRF to 

the repetition time where its shape changes significantly between low and high values.
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Figure 1. 
The hemodynamic response function starts with an increase in the concentration of 

deoxyhemoglobin resulting in a decrease in the signal. It is then followed by an increase 

in the blood flow with a higher concentration of oxyhemoglobin, increasing the signal 

amplitude. Finally, the signal returns to baseline through a post-stimulus undershoot. The 

features of height, peak integral, FWHM, and time to peak are characterizing the peak of the 

response; dip height, dip integral, and time to dip are characterizing the dip of the response; 

and trough height, trough integral, and time to trough are characterizing the post-stimulus 

undershoot.
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Figure 2. 
Effect size and p-value of the Wilcoxon rank sum test between GE, Philips, and Siemens 

for each HRF feature. (A) before harmonization. (B) after harmonization of TR and scanner 

effects. There are significant differences and large effect sizes between manufacturers that 

are reduced with harmonization.
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Figure 3. 
Effect of the harmonization of scanners and TR on the HRF height. Each point represents 

the mean value of the height in the white matter and the line models a linear regression 

between the feature and the age. (A) shows the impact of two TRs on the HRF before and 

after harmonization where the color represents the TR values. (B) shows the impact of the 

different scanners on the HRF before and after harmonization where the color represents 

the scanner models. There are important TR and scanner effects on the HRF that are 

significantly reduced with the use of harmonization.
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Figure 4. 
Regression curve based on a spline model modeling changes in HRF with aging in WM 

(orange) and GM (blue) for each HRF feature. Each point represents the mean value of the 

parameter for a subject. The p-value for all features is not significant (p = 0.005) indicating 

no changes with aging in WM and GM.
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Figure 5. 
Comparison of the HRF average in WM and GM across two populations obtained with 

TR=0.607s (blue curves) and TR=3s (orange curves). It shows significant differences in the 

HRF behavior according to the TR used during acquisition. The WM is lower than GM 

in the dip with a TR=3s which shows that an important repetition time does not allow to 

precisely capture the variations of the HRF.
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